Effect of Constraint on Ductile Crack Growth and Ductile-Brittle Fracture Transition of a carbon Steel

نویسنده

  • C. Yan
چکیده

Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70 o C to 40 o C for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases. * To whom all the correspondence should be addressed. Fax: 61-2-93517060 E-mail: ycheng@ tiny.me.su.oz.au

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic and Quasi-Static Tensile Properties of Structural S400 Steel

The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...

متن کامل

Constraint-Based Master Curve Analysis of a Nuclear Reactor Pressure Vessel Steel results from an experimental programme carried out within the IAEA CRP-8 project

This report presents the outcome of four fracture test series, addressing the ductile-to-brittle toughness behaviour of a nuclear reactor pressure vessel steel. Each test series corresponds to a specific test specimen geometry, tensile or three-point-bend, with a given degree of crack-tip constraint. A brief overview is given of available constraint-based fracture mechanics methodologies in the...

متن کامل

Modeling the brittle–ductile transition in ferritic steels: dislocation simulations

We present a model for the brittle–ductile transition in ferritic steels based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto–plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in a...

متن کامل

Probabilistic Modeling of Brittle Fracture Including 3-D Effects on Constraint Loss and Ductile Tearing

This study presents a probabilistic, 3-D framework to describe brittle fracture in structural components which incorporates weakest link statistics and a micromechanics model reflecting local damage of material. The Weibull stress (a,) emerges as a fracture parameter to define conditions leading to local material failure. This parameter is correlated with the macroscopic loading and used to des...

متن کامل

HOT CRACK FORMATION IN PURE CU AND CU-30%ZN ALLOY DURING IN SITU SOLIDIFICATION

The hot cracking susceptibility can be determined by establishing the transition temperature between brittle and ductile fracture at high temperature tensile testing of in situ solidified samples. High temperature tensile properties were determined for commercial cathodic pure Cu and Cu- 30%Zn alloy. The transition temperatures for pure Cu and Cu-30%Zn were evaluated from ultimate tensile stres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014